Learning person-object interactions for action recognition in still images

نویسندگان

  • Vincent Delaitre
  • Josef Sivic
  • Ivan Laptev
چکیده

We investigate a discriminatively trained model of person-object interactions for recognizing common human actions in still images. We build on the locally order-less spatial pyramid bag-of-features model, which was shown to perform extremely well on a range of object, scene and human action recognition tasks. We introduce three principal contributions. First, we replace the standard quantized local HOG/SIFT features with stronger discriminatively trained body part and object detectors. Second, we introduce new person-object interaction features based on spatial co-occurrences of individual body parts and objects. Third, we address the combinatorial problem of a large number of possible interaction pairs and propose a discriminative selection procedure using a linear support vector machine (SVM) with a sparsity inducing regularizer. Learning of action-specific body part and object interactions bypasses the difficult problem of estimating the complete human body pose configuration. Benefits of the proposed model are shown on human action recognition in consumer photographs, outperforming the strong bag-of-features baseline.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Face-space Action Recognition by Face-Object Interactions

Action recognition in still images has seen major improvement in recent years due to advances in human pose estimation, object recognition and stronger feature representations. However, there are still many cases in which performance remains far from that of humans. In this paper, we approach the problem by learning explicitly, and then integrating three components of transitive actions: (1) th...

متن کامل

بهبود بازشناسی چهره با یک تصویر از هر فرد به روش تولید تصاویر مجازی توسط شبکه‌های عصبی

This paper deals with the problem of face recognition from a single image per person by producing virtual images using neural networks. To this aim, the person and variation information are separated and the associated manifolds are estimated using a nonlinear neural information processing model. For increasing the number of training samples in neural classifier, virtual images are produced for...

متن کامل

Understanding Human Actions in Still Images a Dissertation Submitted to the Department of Computer Science and the Committee on Graduate Studies of Stanford University in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

Many human actions, such as “playing violin” and “taking a photo”, can be well described by still images, because of the specific spatial relationship between humans and objects, as well as the specific human and object poses involved in these actions. Recognizing human actions in still images will potentially provide useful information in image indexing and visual search, since a large proport...

متن کامل

Exemplar-Based Recognition of Human-Object Interactions

Human action can be recognised from a single still image by modelling human-object interactions (HOI), which infers the mutual spatial structure information between human and the manipulated object as well as their appearance. Existing approaches rely heavily on accurate detection of human and object and estimation of human pose; they are thus sensitive to large variations of human poses, occlu...

متن کامل

Object Recognition using Geometric Properties and a variant of Boosting

This paper describes an approach for learning object descriptions as combinations of simple features using labeled still images. The contribution of this paper is a new method for constructing geometric relations of simple features with the LPBoost algorithm. A full search for relevant geometric relations between simple features is rather impossible because of the computation time required. We ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2011